
Parallel processing is a form of computing in which a number of activities
are carried out concurrently on multiple machines so that the time
required to solve a given problem is minimized. The advent of low cost
high performance Pentium machines and PC based LINUX operating
system have attracted many researchers to explore parallel processing
experiments on PCs. The PC based clusters provide low cost solution
of high performance computing. In this paper, we provide detailed steps
on setting up a LINUX cluster. Also, a cluster application has been
discussed by mapping a compute intensive scientific algorithm.
Furthermore, a scheme is presented for distance computing, in which
the cluster based parallel processing facilities are extended to the remote
users through the Internet.

1. INTRODUCTION

*

ABSTRACT

Journal of Information & Communication Technology
Vol. 2, No. 2, (Fall 2008) 116-125

The material presented by the authors does not necessarily portray the viewpoint of the editors
and the management of the Institute of Business and Technology (BIZTEK) or College of Computer Science
& IT , Saudi Arabia

JICT is published by the Institute of Business and Technology (BIZTEK).
Ibrahim Hydri Road, Korangi Creek, Karachi-75190, Pakistan.

*

*

C

Scientific and engineering communities have been using Parallel computing techniques
solve large scale complex problems. For parallel computing applications, parallel
supercomputers have been used in the past. However, their popularity is declining due to
factors like being expensive to purchase, run and maintain, slow to evolve in the factor
of emerging hardware technologies, and difficult to upgrade without, generally, replacing
the whole system etc. The parallel processing is also possible by making a cluster of
microprocessor based low cost personal computers (Anderson, T.E., D.E. Culler and
Peterson). This paper describes the experience of building a cluster of PCs by utilizing
low cost Pentium machines and the LINUX Enterprise Edition operating system.

In parallel programming software, the process coordination by message passing is required
to achieve the problem solution objective. Advanced software developers have designed
and implemented several interesting programming models to help develop parallel
applications. The most popular ones are OpenMP for shared memory programming and

Parallel Processing on Pentium Machines: a Low cost
Solution for High Performance Computing

Syed Misbahuddin
Fazal Noor

Saleh Zugail
Department of Computer Science and Software Engineering

University of Hail, Hail, Saudi Arabia

*
*

: smisbah@uoh.edu.sa
: fnoor@uoh.edu.sa
: zugail@uoh.edu.sa

Syed Misbahuddin
Fazal Noor
Saleh Zugail

*
*

INSPEC Classification : C4240P, C5130, C6110P, C6150N

MPI (Message Passing Interface) for distributed memory programming (Chandra, 2001),
(Pacheco P., 1997). Recently, multi-threading programming on Symmetrical Multiprocessor
(SMP) architectures and message-passing programming on distributed memory systems
are becoming more popular and prevalent.

There are several MPI implementations such as MPICH, LAM (Edinburgh Parallel
Computing Centre, 1991), Common High-level Interface to Message-Passing CHIMP(W.E.
Trench, 1989). etc. In this paper, we use LAM implementation. LAM (Local Area
Multicomputer) was developed at Ohio Supercomputer Center. LAM is a programming
environment and development system for a message-passing parallel machine constituted
with heterogeneous UNIX computers on a network The Message Passing Interface Standard
(MPI) is a message passing library. It is widely used in writing programs in which distributed
computing are necessary.

In section 2, we give the steps on how to build a PC cluster. Step by step process of
developing Intel PC based parallel processing platform has been described in the Appendix
at the end of this paper. Section 3 presents a compute intensive application in area of signal
processing where MPI functions are utilized to parallelize an algorithm written in C++
and run under a LAM environment cluster. Finally, conclusion is given in section 4.

2. DEVELOPMENT OF A PC CLUSTER

Initially, a private local area network (LAN) was set up consisting of a server (which later
became the head-node of the cluster-based system) and two clients. We linearly expanded
the cluster by adding 14 clients to make a 17 node cluster (1 Server (master) + 16 Clients
(slaves)). This scheme allowed us to make a Master-Slave model with 1 master and 16
slaves. We kept an even number of clients for graceful mapping of parallel algorithms on
the cluster. Figure 2 shows 17 nodes cluster. In this cluster, the S1 machine is an NFS/NIS
server and all the other machines (S2 – S17) are NFS/NIS clients. We used available a mix
of P3 and P4 machines.

Figure 2.
 A 17 node Cluster

The basic steps involved in building a cluster are summarized as following:

1) Installation of Linux Enterprise edition on all pentium machines.
2) Network configuration on Linux nodes.
3) Configuring NFS/NIS server and clients.
4) Configuring Local Area Multicomputer (LAM) environment for launching parallel
applications on Linux nodes.

117

Parallel Processing on Pentium Machines: a Low cost Solution for High Performance Computing

Vol. 2, No. 2, (Fall 2008)

.

NFS/NIS server (S1) NFS/NIS Clients 1 NFS/NIS Clients 2 NFS/NIS Clients 16

Ethernet Network

Complete detailed steps of building a cluster are provided in the Appendix.

3. USING LINUX CLUSTER FOR PARALLEL APPLICATIONS

A cluster of 17 PCs was used to run a program in parallel to compute computationally
intensive complex problem. One such problem arises in array signal processing where a
process is stationary and the covariance matrix is Hermitian Toeplitz. In this case matrices
formed are of large order and problem reduces to compute eigenvalues. Algorithms exist
in literature which for high order Hermitian Toeplitz matrices, are very compute intensive
(Y. H HU, 1985), (F. Noor, 1993), (F. Noor, 1992). In this section, we have implemented
algorithms on a cluster of Pentium machines using MPI functions within C++ software.
The mapped algorithm run in parallel to compute all the eigenvalues of a given Hermitian
Toeplitz matrices.. The parallel algorithm presented is an improvement over author's
previous work (F. Noor, 1992). The parallel algorithm runs on a cluster of Pentium machines
and further improves the rate of convergence. Next, we present mathematical development
and summarize the sequential and the parallel algorithms.

Mathematical Development
Given a Hermitian Teoplitz matrix Cn of order n,

Where c0 is real and c1, c2 , …, cn-1 are complex, the problem is to find the complete
eigenspectrum. Since Cn is Hermitian, c*-i = ci, i = 0,1,..., n -1. The principal submatrix of
Cn of order k is defined as Ck = [ci-j :0#i, j#k-1], k=1,2,....,n.

Consider the following linear system involving the shifted Hermitian Toeplitz coefficient
matrix Cn -λΙn :

(Cn -λΙn) = [En (λ) 0...0]T

where λ is treated as a continuous real variable. We assume all principal submatrices , Ck
- λIk , k= 1, 2,..., n, are nonsingular. This implies that the Levinson-Durbin(L-D) recursion
can be applied to (Cn -1-λIn) in-1 =[c0c1*...c*n-1]T

In order to find the elements in-1i, i = 1,2, ..., n - 1, of in-1 (λ) in a recursive fashion using
the following algorithm:

Initialization:
E0 = c0 -λ,

For 1#k#:n-1
Compute:

ikk = ρk

118 Journal of Information & Communication Technology

Syed Misbahuddin, Fazal Noor, Saleh Zugail

ρk =
1

Ek-1
ck -3ik-1,ck -1

k -1

i -1

1
-in-1(λ)

c0

c1

.

.

.

cn-1

c0

c1

.

.

.

cn-2

...

...

...

c*n-1

c*n-2

.

.

.

c0

Cn =

ikk = ik-1,i - ρki*k-1, 1#i#k - 1
Ek = Ek-1 (1- *ρk*

2
)

The parameters ρk and Ek are known as the reflection coefficient and prediction error,
respectively, at the kth recursive step. Note that all the quantities in equation (3) depend
on the parameter λ through the initialization E0 .

The following algorithm involves 3 steps to sequentially extract all the eigenvalues of a
Hermitian Toeplitz matrices.

Modified-Algorithm-Hermitian Toeplitz Matrices (MAHTM)

Step 1-Select: Find the eigenvalues λp, λp+1,...,λq, 1#p<q#n. Using trial and error, select
an interval (a,b)by bisection such that Negn (a)#p-1, Negn (b) $q

For i =pTo q-1.

Step 2-Search: Search for the endpoint i Uξi not captured by trial and error such that
(Lξi,Uξi) contains λi. This is done by bisection and by keeping count of the negative signs
of {E1(Uξi), E2(Uξi),..., En(Uξi)}. During this search process, keep tightening, capturing,
and storing the locations of other desired eigenvalues, while also retaining the values
En(Lξi), En(Uξi), and En(Lξi+1) .

Step 3-Refine: Once all the intervals Lξi < λi < Uξi, p#i#q, are obtained:
For j=p To q

(a) Set α=Lξj , Ea=En(Lξj) and β=Uξj, Eβ=En(Uξj).
(b) For multiple eigenvalues, set the matrix order n to n-m+1 and work with the submatrix

Cn-m+1. By trial and error, refine the interval (α,β)to (α',β')by bisection such that the
following conditions hold:
i. Negn (α')= j-1. and Negn (β') = j
ii. En(α')>0 and En(β')<0.

(c) Switch to MRQI or PEGASUS method to find λj.
Next j
End.

Parallelism in the above algorithm can be done several ways. Some of the methods are as
follows:

Method 1). The above algorithm MAHTM is executed in parallel on each computer (node)
in the cluster for different range of eigenvalues. So in parallel each node finds for
p=my_rank*n/psize +1 to q=(my_rank +1) * n/psize range of eigenvalues, where my_rank
is the rank of each computer in the group, psize is the number of computers or nodes in
a group, and n is the size of the matrix. We will call this method MAHT-P.

Method 2). Master Computer: Performs Step1-Select and Step2-Coarse Search then once
all intervals are obtained then in parallel these intervals may be send to the slaves to
extract the eigenvalues. Slave computers: Each slavex in parallel receives an interval and
uses either MRQI or Pegaus method to find λj. In other words, parallelism is done at Step
3 of MAHTM and slaves are idle the whole time Master Computer performs step 1 and
2.

Method 3). Master and Slave Computers: All computers master and slave participate in
obtaining the coarse intervals and pass the intervals to the master which acts as a
coordinator. The master then sends one interval to each slave and waits for the result.
Once the result is received it sends another interval to the same slave. The process is
repeated till no more intervals to send.

119

Parallel Processing on Pentium Machines: a Low cost Solution for High Performance Computing

Vol. 2, No. 2, (Fall 2008)

Method 3 is summarized as follows:

MPI-Parallel-Eigen Algorithm Hermitian Toeplitz (MPEAHT) Matrices

Step 1: In parallel each computer (Master and Slaves) finds the range of intervals from
p to q each containing an eigenvalue according to their rank . Each has range from p=
my_rank*n/psize + 1 to q=(my_rank + 1) * n / psize intervals to find, where my_rank is
rank of each computer in the group, psize is the number of computers in the group, and
n is the size of the matrix.

Step 2: Intervals found are sent to Master Computer and then Master Computer sends an
interval to a slave to find λj. Each slave receives a single interval at a time. The slave
computes an eigenvalue and sends back a signal to master to send another single interval
containing an eigenvalue. In this scenario, there is communication between master and
slave but slaves are load balanced. Time spent by slave to compute an eigenvalue exceeds
the time taken to communicate with the master.

In MPI-Parallel-Eigen (MPEAHT) the master and slave computers perform the coarse
search in which non-contiguous intervals, in general, are obtained containing an eigenvalue
per interval.

Below is the skeleton of the MPI program used with the above algorithm.

void intervals(int p, int q);
void roots(int kkk);

int main(int argc, char** argv)
{
int WORKTAG = 1;
int EXITTAG = 2;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &psize);

// p= my_rank*nn/psize + 1;
// q= (my_rank + 1) * nn / psize;
for (rank = 0; rank < psize; ++rank)
{
if (my_rank == rank)
{
intervals (p, q);

if (my_rank != 0)
{
for (kkk=p; kkk<=q; ++kkk)
{

// Each slave P_i have found intervals will send from p to q intervals to Master
// Sending intervals back to Master with rank = 0
MPI_Send(&work, 5, MPI_DOUBLE, 0, 22, MPI_COMM_WORLD);

} /* end-for kkk */
} /* end if rank not 0 */
} /* if my rank == rank */
} /* for loop rank = 0 */

Journal of Information & Communication Technology120

Syed Misbahuddin, Fazal Noor, Saleh Zugail

if (my_rank == 0)
{
n1=nn/psize + 1;

for (l=n1; l<=nn; ++l)
{
MPI_Recv(&work,5,MPI_DOUBLE, MPI_ANY_SOURCE,MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

} /* end for l=n1 */
} /* end-if my rank == 0 */

// Range of eigenvalues to search
p = 1; q = nn;

// Master is finding the coarse intervals containing an eigenvalue
if (my_rank == 0)
{ intervals (p, q);

// Sending intervals to processors with rank 1 to psize -1
for (rank=1; rank < psize; ++rank)
{ MPI_Send(&work,5,MPI_DOUBLE, rank,WORKTAG, PI_COMM_WORLD);
}

// While there are intervals send them to find eigenvalues in them
i=psize;
while (i != nn+1)
{ MPI_Recv(&result,4,MPI_DOUBLE, MPI_ANY_SOURCE,MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

MPI_Send(&work ,5 ,MPI_DOUBLE, s ta tus .MPI_SOURCE,WORKTAG,
MPI_COMM_WORLD);
} /* end-while */

// No More Intervals left so recieve all that is still being worked upon
for (rank=1; rank < psize; ++ rank)
{ MPI_Recv(&result,4,MPI_DOUBLE, MPI_ANY_SOURCE,MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
}

// Broadcast signal to slaves to indicate no more jobs therefore exit
for (rank =1; rank < psize; ++rank)
{MPI_Send(0,0,MPI_INT,rank,EXITTAG, MPI_COMM_WORLD);
}

} /* end-if my rank equals 0 */

else {
// Slaves do the work; Processor i receives the lower and upper intervals
// slave returns with result array containing, eigenvalue, no of iterations, time elapsed in
seconds.

while (1) {

/* Receive information from Master */
MPI_Recv(&work,5,MPI_DOUBLE, 0,MPI_ANY_TAG,MPI_COMM_WORLD, &status);

121Vol. 2, No. 2, (Fall 2008)

Parallel Processing on Pentium Machines: a Low cost Solution for High Performance Computing

/* Check the tag of the received message *

if (status.MPI_TAG == EXITTAG)
{ MPI_Finalize();
return 0;
}

/* Do the work */
roots(kkk);
M P I _ S e n d (& r e s u l t , 4 , M P I _ D O U B L E , 0 , 0 , M P I _ C O M M _ W O R L D) ;
} /* end while (1) */

} /* end-if my rank equals 0 else */
MPI_Finalize();
return (0);
}

In MPEAHT the master dispatches intervals among the slaves and waits to receive result
and then sends another interval. In this case load is balanced in time among the slaves,
therefore some slaves may compute more eigenvalues than others.

We implemented MPEAHT in C++ with MPI functions and ran it on our cluster under
LAM environment. With LAM, a LINUX cluster can act as one parallel computer solving
one computeintensive problem as in our application.

Parallel programs are executed on LINUX cluster by two methods:
1. Interactive: User programs are directly executed at the login shell, and run immediately.
2. Batch: Users submit jobs to system program which will be executed according to
the available resources and site policy.

In our cluster we used the Interactive option. In this method, a non-root user needs to log
on to NFS server (S1 in our cluster) and launch LAM parallel programming environment
(PPE). This environment can be established on all nodes in the cluster or on a subset of
nodes. To initiate PPE, nodes’ host names are written in text file and “lamboot” command
is issued by non-root user. The syntax of initiated PPE is shown below:

lamboot –v machinefile

In the above command, machinefile is the text file containing the names of machines on
which PPE is to be launched. A parallel program can be written in C utilizing MPI functions.
The parallel program will be compiled by a special compiler called Handle-C compiler
(hcc). The executable image can be sent to run on n nodes in the cluster by following MPI
command:

mpirun –np n < executable image name>

where n is the number of machines on which the executable image will be loaded and
executed. For example, let the executable image name be “abc” and n=17, then the following
command is issued on NFS server:

Journal of Information & Communication Technology122

Syed Misbahuddin, Fazal Noor, Saleh Zugail

Figure 3
Speedup vs number of processors of MAHT-P and MPEAHT algorithms.

Experimental Results

We implemented the above algorithm in C++ with MPI and ran it on a 17 node cluster.
Figure 3 shows the speedup of the two algorthims. Speedup is defined as T1 /Tp where T1
is the execution time on one processor and Tp is the execution time on P processors. We
note from Figure 3, MAHT-P performs better than MPEAHT for small number of processors
(less than 4) however as the processors are increased MPEAHT outperforms MAHT-P.
Tables 1a and 1b, below show two sample runs of algorithm MPEAHT on six slaves
machines in the cluster. The matrix size is 500 for this sample run. Note, same processor
may have different number of intervals at different times resulting in imbalance in number
of roots. Also note some processors may be slower than others, for example, P1 although
has less number of iterations than P2, P1 takes more time than P2. Similar conclusions
can be made for other processors.

MPEAHT

4. REMOTE ACCESS OF CLUSTER FOR PARALLEL PROCESSING

Before parallel jobs could be started, a parallel programming environment (PPE) is
launched on all participating node inside the cluster. To initiate PPE, a non root user logs
on the NFS/NIS server node or “head node” and issues the necessary commands. Once
PPE is running the parallel code is executed by issuing “mpirun” command specifying
the number of nodes one which the parallel job is to be run. Therefore, for cluster’s
remote access, only the head node is made accessible to the remote sites as shown in
Figure 4.

123Vol. 2, No. 2, (Fall 2008)

Parallel Processing on Pentium Machines: a Low cost Solution for High Performance Computing

P1
P2
P3
P4
P5
P6

62
86
96
93
82
81

500

287
410
419
431
356
406

2309

5.72
5.5

5.34
5.52
5.25
5.7

5.505

Table 1a.
No. Roots No. Iter Seconds

P1
P2
P3
P4
P5
P6

60
96
60
96

100
88

500

293
443
285
438
450
400

2309

5.85
5.56
5.66
5.51
5.7

5.35
5.605

Table 1b.
No. Roots No. Iter Seconds

Figure 4
Remort users can access the head node of LINUX PC Cluster at Main Bldg via internet.

Head node will have a TCP/IP connectivity to the LAN connecting all cluster nodes and
to the corporate Intranet. The corporate Intranet is accessible by Internet through Virtual
Private Network (VPN) set up on the Internet client machines. The VPN configuration on
Internet client machines will allow users to connect to the corporate network. Once an
Internet client is virtually connected to the corporate network, he or she can access the
Linux cluster seamlessly. Other alternative approach is allocating a public IP address to
the head node. This way, any Internet client can directly connect to the head using Telnet
protocol over the Internet. However, the second approach is insecure. Therefore, former
approach via VPN is more desirable.

CONCLUSION

Parallel computing is used for achieving fast computational results in variety of areas
ranging from engineering applications to commercial applications. An economical
solution for structuring parallel computing system is possible by connecting customary
Intel based PCs by a network. This ensemble of PCs can form a cluster of workstations.
By using Message Passing Interface MPI, this cluster can be used for implementing
parallel algorithms. This paper has discussed the details of building a PC cluster. We have
discussed an example of parallel programs to motivate users to utilize the PC cluster. Also
remote access to the cluster further makes it cost effective solution of parallel computing
solution for geographically dispersed users’ community. Access of the cluster for parallel
processing may be extended kingdom wide scientific community.

ANDERSON, T.E., D.E. CULLER AND PETERSON, “ A case of NOW(Cluster of
workstations”, IEEE Micro Vol. 15, No.1, pp. 54-64

SYED MISBAHUDDIN and FAZAL NOOR, (2007.) “Hands-on workshop on parallel
processing”, Department of computer science and software engineering, University
of Hail, Saudi Arabia, May 2007.

CHANDRA R., L. DAGUM D. KOHR. D. MAYDAN, J. MCDONALD and R. MENON
(2001) “Parallel Programming in OpenMP”, Margon Kaufmann Publishers, San
Francisco, CA, 2001.

PACHECO P. (1997)“Parallel Programming with MPI”, Morgan Kaufmann Publishers
San Francisco, CA, 1997.

http://www.mcs.anl.gov/mpi/mpich/.
EDINBURGH PARALLEL COMPUTING CENTRE (1991), University of Edinburgh.

CHIMP Concepts, June 1991.
W.F. TRENCH (1989), "Numerical solution of the eigenvalue problem for Hermitian

Teoplitz matrices," SIAM J. Matrix Anal. Appl., vol. 10, no. 2, pp. 135-146, Apr.1989.
Y.H. HU and S. Y. KUNG (1985), "Toeplitz eigensytem solver," IEEE Trans. Acoust.

Speech, Signal Processing, vol ASSP-33, pp. 1264-1271, Oct. 1985.

Syed Misbahuddin, Fazal Noor, Saleh Zugail

Journal of Information & Communication Technology124

F. NOOR and S.D. MORGERA (1993), "Recursive and Iterative Algorithms for Computing
Eigenvalues of Hermitian Teoplitz Matrices," IEEE Transcations on Signal Processing,
vol. 41, no. 3, pp. 1272-1279, March 1993.

F. NOOR and S.D. MORGERA (1992), "Construction of a Hermitian Toeplitz matrix
from an arbitrary set of eigenvalues," IEEE Trans. Siganl Processing, vol. 40, no. 8,
pp. 2093-2094, Aug 1992.

Y.H. HU(1989), "Parallel eigenvalue decomposition for Teoplitz and related matrices,"
in Proc. ICASSP '89, Glasgow, Scotland, pp. 1107-1110.

G. CYBENKO and C. VAN LOAN (1986), "Computing the minimum eigenvalue of a
symmetric positive definite Teoplitz matrix," SIAM J. Sci. Stat. Comput., vol. 7, pp.
123-131, 1986.

A.A. BEEX and M.P. FARGUES (1989), "Highly parallel recursive iterative Toeplitz
eigenspace decomposition," IEEE Trans. Acoust. Speech, Signal Processing, vol.
37, no. 11. pp. 1765-1768, Nov. 1989.

E.H. GOLUB and C. VAN LOAN (1983), Matrix Computations, Baltimore, MD: John
Hopkins, University Press, 1983, pp. 305-312.

125Vol. 2, No. 2, (Fall 2008)

Parallel Processing on Pentium Machines: a Low cost Solution for High Performance Computing

